The Crab Nebula
| The most recent supernova in the Earth's part of the galaxy was observed in China in 1054. It left behind it a peculiarly looking glowing cloud, the Crab Nebula, whose central star was recently revealed as a very rapid pulsar, with a radio signal pulsing about 30 times a second; it also pulses in visible light and in x-rays. The light of the nebula itself is polarized (vibrating in a certain ordered way), again suggesting electrons of very high energy spiraling in a magnetic field, and the nebula also contains many bright filaments (picture), which might well be magnetic in origin.
|
Closer to HomeTo produce x-rays or gamma rays, electrons must collide with something. In a doctor's x-ray machine, for instance, they are shot onto a target, inside a vaccum tube (electrons hitting the screen of a TV picture tube also produce x-rays, but these are absorbed by the glass). Out in space collisions are very few, but x-rays are produced when beams of auroral electrons hit the atmosphere. In 1957 instruments of the University of Minnesota, carried by a balloon to the upper fringes of the atmosphere, detected x-rays emitted by auroral electrons many tens of miles above them. The recent "Polar " satellite carries an x-ray imager, highlighting regions in which auroral electrons are particularly energetic. The pictures produced are much less detailed than the ones in visible and ultra-violet light, from the other auroral imagers on "Polar." These latter images are particularly useful when the satellite is far from Earth, because their images then cover the entire polar cap; but rather detailed x-ray pictures have been obtained from the other end of the orbit, when "Polar" sweeps down, close to the other polar cap. Many different types of radio emissions are generated by ions and electrons trapped in the magnetosphere, but few can be detected from the Earth's surface, because the ionosphere, at 100-300 km above our heads, usually reflects them back into space, just as it reflects back to Earth broadcasts of short-wave radio stations. However, in July 1962, after a high-altitude nuclear test by the US created a dense temporary radiation belt of fast electrons, radio noise from the new belt could be observed on the ground. Even earlier, in 1955, strange radio signals were found to come from the planet Jupiter, greatly puzzling radio astronomers. The source turned out to be the planet's immense radiation belt. The fact that some of the emissions were found to be controlled by the position of the satellite Io is probably related to the electrical currents linking Io to Jupiter. The space probes which have visited Jupiter--Pioneers 10 and 11, Voyagers 1 and 2, Ulysses and most recently Galileo--have observed at close hand many types of radio waves, beamed in interesting modes which still defy explanation. The first four went on to Saturn, and Voyager 2 continued to Uranus and Neptune, all of which were found to be magnetized, have radiation belts and emit radio waves. The solar system thus has magnetosphere beyond the Earths, waiting to be explored, differing from ours by the presence of moons and rings and by other features. |
"Exploration" home page (index) Glossary
Next Stop: #35. Solar Energetic Particles
Official GSFC Home Page ......... NASA WWW Home Page
Last updated March 13, 1999